Active Learning
Engaged Learning

Collection of perspectives on digital innovations in online learning

Paul Kim Ph.D
Assistant Dean & Chief Technology Officer
Stanford University School of Education
phkim@stanford.edu
“OK. OK. OK. I see myspace, youtube, facebook, web-based concept maps, blogs, etc. Why couldn’t they be in one place to best promote student learning? Also, how do you measure learning when things are all over the places? Lastly, can you archive the learning experiences for later use?” (Paul Kim, Asst. Dean & CTO, Stanford School of Education)
Welcome phkim

My projects
- Project 013
- Project 012
- lung
- his x ray
- Digital Video Lab Report
- Electronic Portfolios for Assessment
- Raping Against Tobacco
- Project 08
- Project 05
- this is nsdfsdfasdfsdfasdfsarfertasf
- test sdfsdf
- Project 02

My groups
- ePortfolio
- Plot
- KISTI
- KISTI R&D
- SUSE IT
- ANYONE

My images
- Learning Activities
- Photonovella
- Say noff's work

Upload files or documents
- Click here for multiple upload (only for IE)
- Used space: 0.06% 10.28 MB/5 GB
- File: Browse...
- Title:
- Description:
- Make public: √
- Progress:

Blog = E-portfolio
Myspace + Youtube + Web map +
Welcome phkim

Viewing phkim's objects

lung diagnosis

Is public: True
Make public

Groups list:
- KISTI [x]
- ePortfolio Pilot [x]
Add to

group

Tag list:

Tag

Click here to edit description
Hosting based services for multi-sites

- Multimedia-rich learning activities
- Real-time access for group collaboration
- Large-scale digital knowledge library
- Concept map-based digital portfolios
- Learning interaction management
- High definition image visualization

University network-based independent service
What is e-portfolio?

- A portfolio is a *purposeful* and *selective* collection of the student work showing *reflection* and *progress* of achievement over time (Montgomery, 2001).

- Captures what traditional assessment methods (multiple choice questions) cannot capture.
Advantages of e-portfolios

- The process of portfolio development fosters metacognitive skills (e.g., Reflection, Goal setting, etc.)
- Portfolio allows authors to demonstrate their thinking, learning, communicating... competencies.
- Use of technology to enhance portfolios is a hands-on incentives for learning the technology skills needed in this digital age.
- All that blogging now becomes an evidence of student learning.
Current Students

- Current students can check their overall degree and credentialing progress.
- Update their biographic information.
- Update digital portfolios for various purposes.
- Share learning strategies or reflections while collaborating on group work.
Student Portfolio Competencies

- Collect evidence of learning
- Select specific evidence that demonstrates a particular outcome, goal or standard
- Reflect on learning outcomes represented in evidence, making a case that the artifacts constitute evidence of achievement
- Make connections in their learning
- Set goals for future learning
Faculty

- Enter and review various assessment results and student data.
- Conduct data analyses using the built-in tools that link datasets from admission, internship evaluations, and university administrative databases.
- Enhance the curriculum based on research results.
Alumni

- Develop and augment their portfolios with digital artifacts such as videos, photos, PowerPoint presentations, or electronic documents resulted from their coursework, practicum training, or field works.
- Access learning resources for continued professional development.
- Update their contact information.
- Serve as cooperative mentors.
Administrative Staff

- Add course or program evaluation data.
- Assign roles and resources to accounts.
- Analyze data and generate reports.
- Update web services on the portal.
- Generate reports for accreditation agencies.
- Export STAT-ready data files.
Potential Employers

- Examine student portfolios before and after graduation.
- Access electronic resumes and actual coursework.
- Review faculty remarks and internship evaluations.
- Make direct contact with students, faculty, and administration.
Supporting Community

- Advisors
- Work Supervisors
- Cooperative Mentors
- Alumni Network
- Industry Partners

Provide guidance and job offers.
Welcome to STEPnet!

Welcome Class of 2008-09!

To log in, follow the instructions from your STEPnet registration email.

Send problems/feedback to Chandelle Arambula:
ccblack@stanford.edu

Useful links

STEP:
http://suse-step.stanford.edu

SUSE Virtual Job Network:
http://ed.stanford.edu/suse/alumni/internships-jobs.html

SUSE Intranet:
http://suse-intranet.stanford.edu

SUSE Career Services:
https://suse-intranet.stanford.edu/students/career-services.html
“In a web 2.0 environment, a series of postings is not the only thing. There is emotion, personality, individualism, creativity, meta reasoning, collective intelligence, etc. How do you know what influences what and how do we best facilitate student learning in such environment?” (Paul Kim, Asst. Dean & CTO, Stanford School of Education)
안녕하세요. 광운대학교 교육학개론 수강생 여러분께 반갑습니다~^^
여러분 친구들끼리에 의미있는 활동들이 되었으면 합니다.
한학기 동안 활발한 활동들로 기 пря합니다.
행운한 카피 한잔 드세요~^^

최근 클럽세팅
1조
2조
3조
4조
5조
6조
7조
8조
9조
10조
11조
12조

최근 클럽시작
어вая등용클럽 (0)
어짜등용팀 (0)

최근 세글
일자별 세글

신문
아미나 게시판

예의에 걸맞은 행동과
소중한 사람을 생각하는

近年的活動

新文章

近期的公告
Web 2.0 is probably the best representative of our daily life-long learning ecosystem.

Use of web 2.0 environment in traditional learning settings is increasing.

It can be a great collaboration space, e-portfolio, assessment tool, self or group reflection tool or project management system integrating various communication tools.
In the Web2.0 learning environment, what could be the role of the faculty?

How such learning experiences could be evaluated?

How do you know if a group is best formed for the most effective team performance in a Web 2.0 environment?

Could Web 2.0 environment promote and support high-level learning activities such as self or team reflection, meta-reasoning, group problem solving, etc.?
Empirical Study on Reflection Variations

Participants

38 undergraduate university students participated in the study. The students were enrolled in a 14-week on/offline hybrid course titled, “Introduction to Pedagogies.” At the onset of the semester, all 38 were arbitrarily assigned in small groups of 3 or 4, creating a total of 12 small teams. The small teams were then randomly assigned with one of the three reflection variations.
Reflection Variations

Self-reflection (SR) was one of the 3 group reflection methods. In this group, the student completed a Team Effectiveness Survey (TES) and reflected on the results alone. With group reflection (GR) method, the student completed TES and reflected on the result as a team. The instructor-supported reflection (ISR) team completed TES and reflected on the result with feedback from the instructor.
Team Effectiveness Survey

TES was an online survey integrated in the Web 2.0 environment. The TES employed in this study was the work of Jang (2004) who revised the original work of Silberman (2001). Jang basically simplified Silberman’s survey measures and tested the reliability and validity in Korean language for Korean university students. TES consisted of 20 questions with 1-5 Likert scale responses focused on assessing team effectiveness based on shared vision and goals, role distributions, interpersonal interactions, and processes involved in completing the team project. The online TES took responses from the students and provided a report summarizing the assessed team effectiveness. In this study, TES was conducted at the midpoint of the project and also towards the end of the project.
Measuring Performance, Participation, and Satisfaction

Performance. In this study, a performance evaluation measure from a study of Yoon (2006) was employed. The measure (Maximum 20 points) examined completion, relevance, logic & coherence, and creativity of the final project.

Participation. In order to measure how active a student was in the overall project, the frequencies of all postings combining inquiries, responses, and comments in the Web 2.0 environment were tallied and averaged for each group. The web-base learning evaluation criteria used in this study were adopted from the work of Yoon (2006).

Satisfaction. The satisfaction measure used in this study was adopted from the study of Jang (2002). The measure covered project activities, learning experiences, teamwork, and team reflection process in 22 questions with 1-5 Likert scale responses.
<table>
<thead>
<tr>
<th>Team</th>
<th>Team Effectiveness At the Midpoint</th>
<th>Team Effectiveness Towards the end</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Self-reflection (SR)</td>
<td>12</td>
<td>3.45</td>
</tr>
<tr>
<td>Group-reflection (GR)</td>
<td>12</td>
<td>3.61</td>
</tr>
<tr>
<td>Instructor-supported reflection (ISR)</td>
<td>14</td>
<td>3.48</td>
</tr>
</tbody>
</table>
Team effectiveness towards the end of the project

The T.E. scores measured towards the end of the project in all 3 teams showed a substantial increase from the midpoint of the project. A paired t-test of the T.E. scores (3 teams combined) revealed that the increased T.E. score towards the end of the project was statistically significant (t=-4.035, p<0.001).
The effect size for each team assessment variation was also calculated. The effect sizes reported and interpreted in this study followed the formula and practical guidelines suggested by Cohen (1988). The effect size for the SR, GR, and ISR were 0.5287, 0.3151, and 1.381 respectively, suggesting that ISR was most effective team reflection method among the 3 different methods in the Web 2.0 Learning Space employed in this study.
Performance, Participation, and Satisfaction

The measures of performance, participation, and satisfaction are shown in Table 2. In all 3 measures from the 3 teams, the means of performance, participation, and satisfaction of ISR were highest, suggesting that the instructor-supported team performed the best with highest participation and satisfaction.
<table>
<thead>
<tr>
<th>Team</th>
<th>Performance</th>
<th>Participation</th>
<th>Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-reflection (SR)</td>
<td>N: 12</td>
<td>Mean: 12.00</td>
<td>Std Dev: 2.558</td>
</tr>
<tr>
<td>Instructor-supported reflection (ISR)</td>
<td>N: 14</td>
<td>Mean: 18.86</td>
<td>Std Dev: 1.875</td>
</tr>
</tbody>
</table>
However, the analysis results did not clearly present how the reflection variation and T.E. might have played a role influencing the overall team performance under the influence of other variables such as participation and satisfaction. Moreover, how the significant increase in T.E. might have changed the overall interrelationship dynamics among variables. Therefore, an analysis with structural equation models was performed with the assumption that assessment variation, T.E., participation, and satisfaction influence the overall team performance.
SEM at the Mid-point

- Reflection Variation
- Team Effectiveness
- Participation
- Satisfaction
- Performance

Paths and Coefficients:
- Reflection Variation to Team Effectiveness: 0.02
- Team Effectiveness to Performance: 0.69*
- Participation to Performance: 0.30*
- Satisfaction to Performance: 0.08

Additional Coefficients:
- Reflection Variation to Satisfaction: -0.27
- Team Effectiveness to Team Effectiveness: 0.09
- Participation to Participation: 0.37
SEM at the End
“With the emerging online communication tools, e-learning is shifting from textual correspondences to multimodal interactions, engaging the learner in multisynch and multiplatform environments, and incorporating not only a cognitive dimension, but also metacognitive, social, and emotional dimensions of learning activities. How we measure and facilitate learning in such evolving e-learning space is our big research topic.” (Paul Kim, Asst. Dean & CTO, Stanford School of Education)
Possible Shift with Web 2.0 in E-Learning

Product

Content
Student
Lecturer
Textual Postings
Descriptions/Replies

Frequency Counting (N) / Discrete Outcomes

Process

Problem
Facilitator
Reseacher Problem Solver Project Mngr
Multimodal Interactions
Content / Interaction Analysis (CT)
Higher-Level Learning/Collective Intelligence
Multimodal Interactions
6 subjects worked as a team for 3 consecutive projects.

5 methods of communication (e.g., Text, Speech, Digital Gesticulation, Body Gesture, Introduction of External Artifact).

There were 15 meetings in each project.

Analysis of communicative intents (data unit)
The GLM Procedure

Dependent Variable: Contribution

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>17</td>
<td>3724.569630</td>
<td>219.092331</td>
<td>95.06</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>1332</td>
<td>3069.967407</td>
<td>2.304780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>1349</td>
<td>6794.537037</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>score Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.548171</td>
<td>54.58064</td>
<td>1.518150</td>
<td>2.781481</td>
</tr>
</tbody>
</table>

Source Table

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>2</td>
<td>590.312593</td>
<td>295.156296</td>
<td>128.06</td>
<td><0.0001</td>
</tr>
<tr>
<td>Subject</td>
<td>5</td>
<td>106.128148</td>
<td>21.225630</td>
<td>9.21</td>
<td><0.0001</td>
</tr>
<tr>
<td>Method</td>
<td>4</td>
<td>2794.459259</td>
<td>698.614815</td>
<td>303.12</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Performance Based on Participation
It is insufficient to simply examine the skills demonstrated in message content, but rather one must look for evidence of the level of information processing.

Henri's model defined not only the types of skills and interactions demonstrated in online postings, but also attempted to qualitatively define the nature and content of online interactions that give evidence of cognitive development and meaningful learning.

Marra, Moor, & Klimczak (2004). Content Analysis of Online Discussion Forums: A Comparative Analysis of Protocols
Critical thinking ratio is (CT) = (x+ - x-) / (x+ + x-) where x+ is the count of statements contributing to critical thinking for the coding category and x- is the count of statements detracting from critical thinking for the category. Positive numbers approaching 1 indicate the highest levels of critical thinking.

Newman scheme ratings

Scoring Criteria
- R± Relevance
- I± Importance
- O ± Outside Knowledge
- C ± Critical Assessment
- P ± Practical Utility
- W ± Width of Understanding
Performance Based on CTRatio

Subject 1	Subject 2	Subject 3	Subject 4	Subject 5	Subject 6
Series 1: 0.4 | 0.8 | 0.5 | 0.3 | 0.9 | 0.6
Performance Based on Activeness with CTOverlay

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
Performance Based on Activeness, CT Overlay, and rating from social networking group
Few other thoughts on new trends
Conclusion

First, it enables trainees to engage in learning by actively responding to the information exchanged (rather than simply sitting in).

Second, the learning materials can be augmented collaboratively by the online participants in real-time (rather than simply flipping static materials).
Third, the shared best-practices and the evidence of collective intelligence can be archived and reused in future sessions for retraining (e.g., reusable and sharable learning objects).

Fourth, all interactions can be vividly represented and organized in a highly visual manner.

Fifth, the learner can access and experience learning in a ubiquitous manner.
Conclusion

Active Learning

- Ask learners and trainees to identify, specify, select, draw, list, assemble or align points, terms, objectives, principles or models right in the learning space.

- By doing so, misunderstanding, bias, ignorance or indifference becomes clear to the instructor and training executives.
Conclusion: Engaged Learning

- Promote and support constructive social interactions in various forms and modalities that best meet the preferences and competencies of the learner.

- Help students form a community of learners to set proximal and realistic goals, sub-goals, and timelines leading to a success experience based on incremental achievements.

- Have the learner organize and document the evidence of learning in a highly vivid and elaborative fashion.

- Scaffold the processes of self-reflection, self-assessment, self-regulated planning and learning to help individual students or groups maximize their learning potential.
What’s out there?

- For-profit online education programs are growing exponentially.
- Fast-growing online universities do not use complicated technology.
- For-profit universities use web 2.0 for mostly marketing purposes.
Now updated:
Bachelor of Science in Information Technology

This program is focused on the acquisition of theory and application of technical competencies associated with the information technology profession. Concentrations are available in various areas.

Looking for campus or online university-level programs that are convenient yet high quality? University of Phoenix provides nearby campus locations, online degree programs and flexible scheduling for working students. Our campus and online degree programs cover fields such as business and management, communications, criminal justice and security, education, general studies, nursing and health care, human services, psychology, and technology. Whether you attend class on campus or online, University of Phoenix enables you to earn your college degree without putting your life on hold.
<table>
<thead>
<tr>
<th>From</th>
<th>Subject</th>
<th>Received</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsmit3@springfieldcorp.com</td>
<td>RE: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 8:08 AM</td>
<td>14 KB</td>
</tr>
<tr>
<td>Kenneth Crabl</td>
<td>RE: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 7:58 AM</td>
<td>15 KB</td>
</tr>
<tr>
<td>petr@east.net</td>
<td>Re: TRYING TO GET A RESPONSE---Please Stop Replying to this!!!!! READ FIRST!</td>
<td>Wed 7/11/2007 7:57 AM</td>
<td>7 KB</td>
</tr>
<tr>
<td>Kristin J. Martin</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 7:58 AM</td>
<td>23 KB</td>
</tr>
<tr>
<td>Erve Mental Earth</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 7:49 AM</td>
<td>6 KB</td>
</tr>
<tr>
<td>T.A. Brown</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 7:50 AM</td>
<td>11 KB</td>
</tr>
<tr>
<td>Yaggi, Tracy</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 7:59 AM</td>
<td>19 KB</td>
</tr>
<tr>
<td>Paula Zobitsch</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 7:32 AM</td>
<td>10 KB</td>
</tr>
<tr>
<td>HENRY BRASHEN</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 7:27 AM</td>
<td>7 KB</td>
</tr>
<tr>
<td>Smith, Michael S Cls 38 FIG-CN</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 7:19 AM</td>
<td>12 KB</td>
</tr>
<tr>
<td>LIA MARGOLIN</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 1:49 AM</td>
<td>4 KB</td>
</tr>
<tr>
<td>JON PRENEZ (External)</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 1:30 AM</td>
<td>10 KB</td>
</tr>
<tr>
<td>Dr. Felicia Bridgewater</td>
<td>Re: TRYING TO GET A RESPONSE</td>
<td>Wed 7/11/2007 12:05 AM</td>
<td>7 KB</td>
</tr>
<tr>
<td>Phillip Carter</td>
<td>TRYING TO GET A RESPONSE</td>
<td>Tue 7/10/2007 11:28 AM</td>
<td>2 KB</td>
</tr>
<tr>
<td>University of Phoenix</td>
<td>Academic Opportunity</td>
<td>Fri 9/13/2007 10:16 AM</td>
<td>15 KB</td>
</tr>
<tr>
<td>University of Phoenix</td>
<td>Faculty Recruitment Stipend</td>
<td>Wed 2/8/2006 2:23 PM</td>
<td>10 KB</td>
</tr>
<tr>
<td>Kim, Paul</td>
<td>RE: test</td>
<td>Fri 4/15/2008 12:02 PM</td>
<td>2 KB</td>
</tr>
<tr>
<td>Paul Kim (FAC)</td>
<td>test</td>
<td>Tue 3/18/2003 11:00 AM</td>
<td>362 KB</td>
</tr>
<tr>
<td>Tech Support</td>
<td>Graduation Information for Online Students</td>
<td>Wed 1/29/2003 2:56 AM</td>
<td>1 KB</td>
</tr>
<tr>
<td>Tech Support</td>
<td>System Downtime Notice</td>
<td>Wed 1/29/2003 2:54 AM</td>
<td>3 KB</td>
</tr>
<tr>
<td>Internet Technical Support</td>
<td>System Downtime Notice</td>
<td>Mon 12/30/2002 3:55 PM</td>
<td>2 KB</td>
</tr>
<tr>
<td>Internet Technical Support</td>
<td>System Downtime Notice</td>
<td>Sat 12/28/2002 12:25 PM</td>
<td>7 KB</td>
</tr>
<tr>
<td>Internet Technical Support</td>
<td>System Downtime Notice</td>
<td>Sat 12/28/2002 12:17 PM</td>
<td>6 KB</td>
</tr>
</tbody>
</table>
NCU is an accredited online university providing graduate and undergraduate degree programs in business and technology management, education, and psychology.

We create a unique 100% online academic program just for you. Pursue your professional interests, receive personalized guidance from Faculty Mentors, and schedule learning at your own pace. Many online schools mandate weekly attendance, campus residency, and rigid, inflexible program requirements and term schedules. Not NCU! Balance your education with career demands and needs for personal and family time.

Seeking to advance professionally, achieve your dreams and balance personal life with education and career? Northcentral University is the
Grand Canyon University (GCU) is one of Arizona’s leading higher learning institutions. Based in Phoenix, the regionally accredited, private, non-denominational Christian university offers online and campus-based bachelor’s and master’s degree programs through the Ken Blanchard College of Business, College of Education, College of Nursing and Health Sciences, and College of Liberal Arts. The school is ranked as one of the top online education programs...