
V2 IDE Specification

1. Introduction
This document specifies the system and functional requirements for the V2 IDE, an
Integrated Development Environment specifically designed to support the Values To
Variables (V2V) Curriculum in its implementation at the Girls Middle School in Mountain
View (GMS). Although our initial scope of deployment and implementation of V2V and
V2 is limited, we speculate that both the curriculum and the IDE will prove valuable to a
wider audience.

The purpose of the V2 IDE is to provide a visually interactive environment in which to
model, test, and explore scheduling algorithms in real-world inspired traffic scenarios.
The IDE seeks to integrate model (testable scenarios), controller (scheduling
algorithms), and view (implemented by the IDE), in order to provide students with
sufficiently rapid feedback to encourage them to experiment with their implementations.

1.1 Guiding Principles
Relevant enduring objectives of both the V2V curriculum and GMS have been selected as
guiding principles for the design of the V2 IDE. The GMS goals related to V2 are to
encourage girls to:

1. collaborate
2. think critically
3. take risks
4. celebrate diversity
5. empower them to shape a more equitable world Suggested rewording -Gabriel

Adauto 3/7/10 11:45 PM

The V2V enduring objectives related to V2 are to teach:

1. skills that students can use to solve problems they see in the world around
them

2. an understanding of the social impact of engineering - that systems are created
by, and have real consequences for, human beings.

1.2 V2V Curriculum
Although V2V is predicated on a general pedagogical approach to computer science, the
initial incarnation addresses a specific topic in the field of computer science: scheduling.
Scheduling involves decisions by which limited resources are allocated in order to
complete a collection of tasks. Although this concept is central to computer processor
design, it has numerous analogs in the human world in queues of all kinds, from the
grocery store to the traffic intersection. The latter was chosen as a real-world analogy to
guide the majority of the V2V curriculum, due to its status as a subject of interest to
middle school students (vis-à-vis driving), as well as its ubiquitous place in society.

1.2.1 V2V Goals
The V2V Curriculum defines a set of goals which guide the manifestation of curricular
tasks. The following subset of these goals are those directly related to the V2 IDE:

Goal Description

1 Students will implement scheduling algorithms in whole group, small group, and
individual settings. The algorithms implemented in group settings will be highly
structured, while the individual version will be a free-form activity.

2.2 Students will create models to evaluate the performance of their implemented
algorithms. A related objective is to emphasize test-driven development as good
engineering practice.

4 Students will develop confidence when faced with technological complexity, in the
form of a complex model (e.g. multiple intersections)

5 Students will identify the human element in real-world implementations of algorithms

1.2.2 V2V Activities
The V2V also defines a set of activities designed to meet the aforementioned goals. The
following subset of these activities are those directly related to V2 IDE:

Activity [Satisfied Goal] Description

3 [2.2] Students will convert observational data of local traffic light behavior to a
model configuration in the IDE.

4 [1] In a whole group, students and instructors will create an implementation of a
Round Robin Scheduling algorithm for the local traffic light model in the IDE.

[2.2] In a whole group, students will adjust their models for different scenarios (1
car, 1 car in each direction, 1 car in 3 of 4 directions, lines of cars in each direction,
and an ambulance).

6 [2.2] In small groups, students will create models to test algorithms that have been
assigned to them.

7 [1] In small groups, students will create an implementation of a priority-based
algorithm for the local traffic light model in the IDE.

[2.2] In small groups, students will test their algorithms against the scenarios they
created in Activity 6, in the IDE.

8 [2.2] As individuals, students will create more complex models (e.g. multiple
intersections)

9

[1, 4] As individuals, students will create an algorithm of their choice to address their
complex models in the IDE.

[GMS:diversity] Students will test their algorithms against models created by other
students in the IDE.

10
[5] Students will consider the real-world implications of their algorithms, as played
out in the IDE implementation (who was served, who wasn't served, and how
considering these issues affected their algorithm design)

2 Approach
In support of these goals and activities, the V2 IDE serves as an interactive nexus of
model configuration, algorithmic development, and visual feedback. Aside from defining
the test configuration (i.e. model), the student is faced with the task of implementing
the scheduling algorithm for the traffic light. To support the creation of an intelligent
algorithm, the traffic light has access to various sensors and its previous state.

This approach offers several advantages over one in which students omnipotently control
all aspects of the intersection. For one, the aforementioned approach models more
closely real-world behavior, and reduces the complexity of designing the scheduling
algorithm. More importantly, reducing the scope to the traffic light itself lends credence

to the assertion that values can (and are) encoded in perfunctory yet powerful pieces of
technology!

The remaining behavior of the interactive visualization is systematically implemented by
the IDE, further focusing the user's scope.

3 System Requirements
The following System Requirements Traceability Matrix is derived from the guiding
principles and enduring objectives of GMS and the V2V curriculum:

ID Source Description (The system will . . .)

SR.V2V.1 V2V Enduring Objective 1 teach skills for solving relevant problems

SR.V2V.2 V2V Enduring Objective 2 convey the social impact of engineering to students

SR.GMS.1 GMS Mission Statement 1 promote collaboration among students

SR.GMS.2 GMS Mission Statement 2 promote critical thinking in students

SR.GMS.3 GMS Mission Statement 3 encourage risk taking in students

SR.GMS.4 GMS Mission Statement 4 celebrate diversity among students

SR.GMS.5 GMS Mission Statement 5 prepare students to engage in a more equitable world

4 Functional Requirements
The following Functional Requirements Traceability Matrix is derived from the system
requirements and the activities of the V2V curriculum:

ID Source Description

FR.IDE.1 SR.V2V.1,
Activities 3, 4, 7, & 9

The IDE will consist of three persistently visible and
interactive work areas: model editor, control
(algorithm) editor, and view (visual simulation pane)

FR.IDE.2 SR.GMS.3 The simulation pane will be equipped with a start and
stop button.

FR.IDE.3 Activities 4, 7, & 9 When the start button is pressed, the model and and
controller contents will be evaluated. In the absence
of syntax errors, the specified simulation will be
visually run, and the model and controller panes will
be disabled. Otherwise, an appropriate error
message will be displayed (with syntax highlighting).

FR.IDE.4 SR.GMS.3, Activity 4 When the stop button is pressed, the visual
simulation will be stopped, and the model and
controller panes will be enabled. The user may then
alter the model or controller, and subsequently
commence a new simulation without restarting the
IDE.

FR.IDE.5 SR.GMS.1, SR.GMS.4,
Activity 9

The IDE will facilitate uploading model and controller
code from text files, while the simulation is stopped.
If a model or controller is switched, the visual
simulation may be (re)started without restarting the
IDE.

ID Source Description

FR.VIS.1 SR.V2V.2, SR.GMS.2,
Activities 4, 7, & 9

The visualization will be organized as an array of cells
formed by parallel grid lines (dimensions TBD).

FR.VIS.2 " The visualization will be animated as a series of turns
on a refresh rate specified in the model.

FR.VIS.3 " The visualization will support the display of up to 9
four-way intersections, arranged in a fixed 3x3
pattern. The entry, exit, and interconnections of the
intersection are two-way roads. Thus, the center of
each intersection is a 2x2 grid of cells.

FR.VIS.4 " Each intersection will be managed by a traffic light,
the rules of which will be defined by the contents of
the Controller Pane.

FR.VIS.5 " The visualization will show the state of the traffic light
at each intersection. A traffic light may be Green,
Red, or Yellow. The length of Yellow is specified in
the model, as well as the length of time all sides are
simultaneously red.

FR.VIS.6 " The visualization shall support the display of lines of
N cars, which commence at the entry points of the
3x3 intersection grid, and proceed to the
corresponding exit points (future versions may
support specifying an entry point and an orthogonal
exit point, but this will require left/right-hand turn
logic)

FR.VIS.7

"

Only one car may occupy a cell at a time. The size of
a car will be less than 3/4 the size of an individual
cell. The position of a car within a cell will be
randomized for variability, except that when waiting
on the edge of an intersection, the car will be situated
at the fore of the cell with respect to the intersection.

FR.VIS.8 " Cars trip the car sensor when they occupy a cell on
the edge of an intersection.

FR.VIS.9 " The visualization shall support the the animation of
the cars as they follow their path from entry to exit
point, as mediated by traffic lights. Cars will move
forward one cell per turn if (1) the car is not at the
edge of an intersection and the next cell is empty, or
(2) the car is on the edge of an intersection, the light
is green, and the next cell is empty.

FR.VIS.10 " The visualization will support the display and
animation of individually defined priority vehicles
(ambulance, police cars). These will behave similarly
to cars, except that (1) priority vehicles move
forward 2 cells per turn if the next two cells are
empty, (2) priority vehicles compel cars occupying
any of the three cells ahead of it to pull to the side,
and (3) priority vehicles trip the priority vehicle
sensor when they are five or fewer cells away from an
intersection.

FR.VIS.11 " The visualization will support the display and
animation of individually defined semi-trucks. These
will behave similarly to cars, except that (1) semi-
trucks occupy 2 cells at a time, and (2) semi-trucks
move forward .5 cells per turn.

FR.VIS.12 " The visualization will support the display and
animation of sets of N pedestrians. 5 pedestrians
may occupy the same cell at the same time.
Pedestrians move forward .25 cells per turn.

FR.VIS.13 " The visualization will support the display of a single
set of train tracks crossing one set of parallel streets.

FR.VIS.14 " The visualization will support the display and
animation of a train, stopping traffic on one set of
parallel streets. The length of the train will be
specified in the model. Each car in the train moves 2
cells per turn.

FR.VIS.15 " The visualization will support the display and
animation of a rogue elephant my wife informs me
that a cow is more appropriate for an Indian setting.
How do you feel about this, Ashley? -Coram Bryant
3/6/10 9:29 PM that sits down in the road, blocking
two-way traffic for 20 turns before deciding to move
on. The elephant occupies 2 cells at the same time,
and moves 1 cell per turn.

FR.VIS.16

" The visualization will display accidents in the
intersection if two cars attempt to occupy the same
space. If an accident occurs, the movement of traffic
in the two involved directions will cease.

FR.VIS.17

" In the event of an accident, emergency vehicles will
be dispatched to the scene. Once they arrive at the
scene, the accident will be cleared in 10 turns.While
fun, interesting, and true to life, I'm unclear on the
value-add of this feature. Ideally, students are
programming their intersections such that accidents
do not occur. 90% of the time when they do occur,
students will be in the process of writing code and the
resulting accident will be extraneous. IMHO. -Gabriel
Adauto 3/10/10 8:58 AM

FR.VIS.18 " The visualization will highlight a vehicle of interest as
specified by the model.

ID Source Description

FR.MOD.1 SR.GMS.2, Activities 3, 4,
6, 7, 8, & 9

The Model format will consist of Preconditions and
Waves. The preconditions are the number of
intersections (up to 9), the turn rate (i.e. refresh
rate), Yellow light duration, and all-way red duration.

FR.MOD.2 Activities 3, 4, 6, 7, 8, & 9 A wave consists of a specification of cars, emergency
vehicles and impediments. The separation between
waves is specified by a number of turns. Waves may
be given a repeat value.

FR.MOD.3 " Cars may be specified individually, or as a list via a
repeat value. The model-defined attributes of a car
are it's start location (hence it's direction and
destination), color, and whether or not it is a vehicle
of interest.

FR.MOD.4 " Emergency vehicles are specified individually. They
have no model-defined attributes

FR.MOD.5 " Semi-trucks are specified individually. The have no
model-defined attributes.

FR.MOD.6 " Trains are specified individually. They have no
model-defined attributes.

FR.MOD.7 " Elephants are specified individually. They have no
model-defined attributes.

FR.MOD.8 " Pedestrians may be specified individually, or as a list
via a repeat value. They have no model-defined
attributes.

ID Source Description

FR.ALG.1 SR.V2V.1,
Activities 4, 7, & 9

The algorithm code will be written in Java. This will
provide all necssary control constructs for defining a
scheduling algorithm TBD if this is the correct
requirement . . . -Coram

FR.ALG.2 Activities 4, 7, & 9

The algorithm code must implement the following
method, which is called once a turn per intersection
How to specify which? -Coram (helper methods and
global/static variables for maintaining state are
encouraged):
You could use a parameter or global info object that indicated the
current light -Gabriel

void updateTrafficLight()

FR.ALG.3 " The algorithm code will have access to the following
functions:

List<[Direction,Boolean]> getEmergencySensorStatus()
List<[Direction,Boolean]> getVehicleSensorStatus()
List<[Direction,Boolean]> getCurrentLightStatus()
List<[Direction,Boolean]> getPedestrianSensorStatus()
List<[Direction,integer]> getWaitTurns()
[Direction,Boolean] getRailroadSensorStatus()
Boolean getVehicleSensorStatus(Direction)
void setCurrentLightStatus(List<[Direction,Boolean]>)
void setCurrentLightStatus(Direction, Boolean)
void setGreenLights(List<Direction>)
void setGreenLight(Direction)

FR.ALG.4 " The algorithm code will make use of the Direction
enum, defined as follows:

enum Direction
{

North,
East,
South,
West

Direction();
opposite(); // returns the opposite direction
clockwise(); // loops
ccwise(); // loops

}

Additional requirements may be derived from periodic, endo-curricular focus groups in
which students evaluate the IDE and suggest improvements. We hypothesize that this
approach will further impress upon students the concept that people design technology,
while simultaneously building a sense of collective ownership of the curriculum and the
IDE.
How to run tests? Is there going to be some way to store models and outputs so that
predictive tests can be written? -Gabriel Adauto 3/10/10 9:02 AM

Detail: FR.IDE.*
The following diagram visually demonstrates all required features of the IDE, including
the three development panes, start and stop buttons, file upload button, and Controller
and Model validation buttons:

Detail: FR.VIS.*
The following diagram demonstrates a few of the features of the visualization, including
an intersection, stop lights, vehicles, and impediments (train and elephant).

Detail: FR.MOD.*
The model is defined by a series newline separated entities that either describe a single
object or the start/end of a group of objects.

Note: brackets indicate optional entities/fields (e.g. [(N)] indicates that (N) is optional)

Preconditions Description

[REFRESH_RATE X] X: the number of times the scene will be refreshed a
second.
Range: [1, 60]
Default: 1

[INTERSECTIONS X] X: the number of intersections. Intersections are referred
to subsequently as [1, X].
Range: [1, 9]
Default: 1

[YELLOW_DURATION X] X: the number of turns a traffic light remains yellow after
the algorithm has instructed the light to change.
Default: 2

[ALL_WAY_RED_DURATION
X]

X: the number of turns all ways of a traffic light stay red
after the algorithm has instructed the light to change, and
YELLOW_DURATION turns have expired.
Default: 3

Wave Demarcations Description

WAVE Indicates the start of a wave

END [(N)] Indicates the end of a wave

[WAIT X] X: the number of turns to wait after the final action of the
preceding stage before commencing the subsequent
stage.
Default: 2

Note: entities from the prior stage need not have reached
their destinations by the start of the next stage

Wave Entities Description

CAR I D C [* | (N) [S]] I: the first intersection [1, X] this car is destined to cross
D: the direction {N, S, E, W} from which the car will
approach the first intersection
C: the color of the car as an RGB hex value (e.g.
#00FF00)
*: Optionally marks this car as an entity of interest (this
will be reflected in the visualization)
(N): Optionally indicates the number of times a car with
these specifications will be repeated in the wave
S: Optionally provides a step to apply to the color of each
car in a repeated set
Note: * and (N [S]) are mutually exclusive

SEMI I D C [* | (N) [S])] [same as for CAR]

POLICE I D I: the first intersection [1, X] this police car is destined to
cross
D: the direction from which the police car will approach
the first intersection
Range: {N, S, E, W}

AMBULANCE I D [same as for POLICE]

PED I D [* | (N)] [same as for CAR, minus the color]

TRAIN Indicates that a train should cross the scene halfway
through the wave

ELEPHANT I Indicates that a rogue elephant should block one of the
four entrance/exit points at intersection I [1, X] halfway
through the wave.

Example:

PRECONDITIONS
REFRESH_RATE 60
INTERSECTIONS 2
YELLOW_DURATION 3
ALL_WAY_RED_DURATION 1

WAVES
WAVE

CAR 1 N #0000FF (20) 10
TRAIN
CAR 1 W #FF000 *
ELEPHANT 1
CAR 2 E #00FF00 (50)

END (2)

WAIT 5

WAVE
CAR 1 S #0000FF (200)
POLICE 1 N
SEMI 2 E
PED 1 W (25)

CAR 2 W #00FF00 (50)
END

Detail: FR.ALG.*
As noted, the scheduling algorithm will be implemented in Java as the function
updateTrafficLight. If this function is not defined, the visualization will commence with a
random distribution of green lights that will remain unchanged throughout the duration
of the simulation.

The following pseudo-code examples demonstrate how to define round-robin and simple
priority scheduling algorithms for a V2 traffic light (Note that [Direction, Boolean]
designates a currently undefined object containing those properties):

// Round Robin

public void updateTrafficLight()
{

// state is maintained between function calls
static Direction direction = Direction.North;

Direction currentDirection = direction;

while (true)
{

Direction newDirection = currentDirection.clockwise();

// Check to see if we've made a full circle without finding any waiting cars
// if so, break from loop and maintain the original direction
if (newDirection.equals(direction)
{

break;
}

// If we have a vehicle waiting at the next direction, switch to it
Boolean vehiclePresent = getVehicleSensorStatus(newDirection);

if (vehiclePresent)
{

setGreenLight(newDirection);
// Exercise: what other direction might we set green here?

// keep track of the current direction for the next function call
direction = newDirection;
break;

}
}

}

// Simple Priority

public void updateTrafficLight()
{

List<[Direction, Boolean]> EmergencyStatuses = getEmergencySensorStatus();
for ([Direction, Boolean] status : EmergencyStatuses)
{

if (status.on())
{

setGreenLight(status.direction());
return;

}
}

[Direction, Boolean] rrStatus = getRailroadSensorStatus();
if (rrStatus.on())
{

List<Direction> greenLights = new ArrayList<Direction>();
greenLights.add(rrStatus.direction().clockWise());
greenLights.add(rrStatus.direction().ccWise());
setGreenLights(greenLights);
return;

}

// further determinations of priority ...
}

Assessment
What values have been encoded in this IDE? explicit versus "null code" - what has been
included or left out (consciously or unconsciously)

Design Decisions
1. Platform? Flash/Flex/Processing/Other?
2. compile/interpret algorithm code?

	V2 IDE Specification

